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1. Introduction

This report describes the work to compare a simple spherical spreading model
(referred to as the candidate model) with an acoustic propagation model that
incorporates geometrical spreading, refraction, complex ground interactions,
molecular absorption, and some degree of diffraction for near vertical
propagation. Systems that involve the case of near vertical propagation are
now under consideration by the Army. This report shows how the candidate
model compares to more advanced models under conditions similar to certain
acoustic detection systems being developed for the Army. The comparison
shows how much of an impact each of these effects have in relation to realistic
types of nonturbulent atmospheric conditions on the candidate model. The
source level used in the comparison is 115 dB (20 uPa) as measured 1 m from
the source. For problems related to Army needs, the range of interest is less
than 5 km with a slant path from the source to the receiver greater than 25°
from horizontal. In the comparison, the effects studied only have a significant
impact if the effect occurs within the area of interest.




2. Models Used

2.1

2.2

Candidate Model

The candidate model incorporates the two basic effects on acoustic propagation:
spherical spreading and molecular absorption. The mathematical expressior: for
the model is

dB = dBAmp - 20log,(R,) - ATIN *(R, - 1) 0))
where
dB = the sound pressure level at the receiver
dBAmp = the sound pressure level of the target in decibels
R, = the slant path distance from the target to the receiver in
meters
ATTN = the attenuation coefficient caused by the molecular absorption

in decibels per meter.

The attenuation coefficients used in the comparison are calculated using the
ANSI St ndard S1.26-1978. [1] The slant range is subtracted by one because
the reference level of the target is relative to 1 m. Although the model is
basic, it will be shown that it works well for most cases because of the
geometries involved.

Fast Field Program

The Fast Field Program (FFP) is an acoustic propagation model based on a
solution of the acoustic wave equation. The FFP was developed for use in
atmospheric acoustics around 1985. [2,3] The FFP allows researchers the
opportunity to incorporate the effects mentioned earlier. The derivation of the
FFP is beyond the scope of this report; however, there are several good
references on the details of the derivation. [4,5] The FFP incorporates the




effects of refraction and ground impedance on the sound field as it propagates
through the atmosphere, which allows for modeling the effects that refractive
shadow zones and ducting have on atmospheric acoustics. Acoustic ducting is
an atmospheric phenomena in which the temperature and vector wind speed
gradients combine to give a condition in which sound is trapped near the
ground. The condition allows for excellent propagation conditions for ground-
based sensors; however, it could cause the opposite propagation conditions for
an elevated receiver. [6]

2.3 Spherical Model

The spherical model is very similar to the candidate model except it
incorporates the effects of the complex ground impedance. [7) When sound is
reflected from the ground, the wave undergoes & change in the amplitude and
phase. The reflected wave can propagate from the ground and interfere with
another part of the wave causing constructive or destructive interference. The
effect of the ground on acoustic propagation depends on the frequency of the
sound wave. At low frequencies (less than 100 Hz), the ground is acoustically
hard resulting in near perfect reflection. Because of the ground being
acoustically hard, the sound field from a target is not very dependent on the
ground characteristics for low frequencies. As the frequency increases, the
sound field from a target looks similar to the electric field from a dipole
radiator. The location and number of constructive and destructive interference
lobes depends on the characteristics of the ground and the acoustic frequency.
The discussion on the effects of the ground continues in section 4.2.

2.4 Ray Trace Model

A ray trace model [8) is very useful to visually determine how the sound is
propagating through the atmosphere. This allows visualization of the effect of
refraction and its influence on the sound as it propagates through the
atmosphere. Section 3 presents some results from tracing rays through the
atmosphere and discusses how to calculate the angular spread of sound
propagating out of an acoustic duct, based solely on refraction.




3. Parameters Used In Comparison

3.1

e

Atmospheric Profiles

The atmospheric profiles determine the sound speed profiles that influence how
sound propagates through the atmosphere. The atmospheric profiles can vary
dramatically from day to day. However, the sound speed profiles calculated
from the atmospheric profiles usually fall into a limited number of acoustic
propagation characteristics. Five typical types of sound speed profiles
(Cases 2-6) were chosen for this study, a sixth type was chosen as a basic
benchmark (Case 1). Because the rain concern is the shape of the sound
speed profile, the temperature profile is used to calculate the sound speed
profile, and the wind speed profile is ignored. Because the propagation
characteristics of each type of profile are most important, the exact slope of the
sound speed profile is not important. Inclusion of the wind speed profile does
not change the types of sound speed profiles used in the comparison, but
slightly alters the slopes. The propagation characteristics of the idealized
profiles are consistent with real profiles collected from measurements
(appendix D). The breakdown of the profiles follow:

Case 1: Homogeneous - This is a simple type of atmosphere
generally used in the comparison between acoustic models. In
this case, there is no refraction due to the absence of a sound
speed gradient. The propagation effects involved are geometrical
spreading, molecular absorption, and complex ground impedance.
The sound speed in the atmosphere was calculated based on a
surface temperature of 30 °C (figure D-1).

Case 2: Mild Upward Refraction - This type of profile
corresponds to conditions in the atmosphere when the temperature
profile follows a mild negative lapse rate (0 > dT/dz >
—10 °C/km) with light winds present. The condition occurs
during the early morning after the nocturnal inversion has broken;
a cloudy day; or the night before the nocturnal inversion begins
to build. The condition results in upward refraction causing the
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formation of a refractive shadow zone. A refractive shadow zone
is a region in which sound cannot reach the receiver from a direct
or reflected path. The sound speed profile was calculated using
a temperature gradient of —7 °C/km with a surface temperature
of 20 °C, (figure D-2). The surface temperature is lower than for
Case 3.

Case 3: Strong Upward Refraction - This type of profile
corresponds to conditions in the atmosphere when the temperature
profile is a super adiabatic lapse rate (dT/dz < —10 °C/km) with
light winds present. This cendition occurs during the day when
the ground is being heated by incoming solar radiation. As in
Case 2, this condition also results in upward refraction but the
degree of upward refraction is greater. The distance to the
refractive shadow zone from the source is less than for Case 2
because of the greater degree of upward refraction. The sound
speed profile was calculated using a temperature gradient of
—12 °C/km with a surface temperature of 30 °C, (figure D-3).

Case 4: Downward Refraction - This type of profile does not
strictly correspond to a specific type of atmospheric condition;
however, similar sound speed profiles can be formed from upper
air wind shears (600 - 2000 m). This condition results in sound
waves being refracted back down to the ground. The sound speed
profile was calculated using a temperature gradient of +7 °C/km
with a surface temperature of 20 °C, (figure D-4).

Case 5: Shallow Inversion - This type of profile occurs at night
when the nocturnal inversion has built up. The temperature
inversion forms an acoustic duct that causes sound to be trapped
near the ground. Not all of the sound emitted by a target will be
trapped within the acoustic duct. Section 3.2 discusses how to
calculate the angular distribution of sound that is trapped within
the acoustic duct from a source. This case is called shallow
because it is relevant to nocturnal inversions with thicknesses
from near surface to 200 m. The sound speed profile was




3.2

calculated using a temperature gradient of +20 *C/km from the
surface to 150 m and —8 °C/km above that with a surface
temperature of 20 °C (figure D-5).

Case 6: Deep Inversion - This type of profile occurs during the
day or at night because of a wind shear present in the atmosphere
or a very high temperature inversion. This type of profile is
typically referred to as an inversion because the shape of the
sound speed profile is very much like the sound speed profile
from a nocturnal inversion. This case is called deep because the
thickness of the acoustic duct is greater than 200 m. As
mentioned in Case S, a certain angular distribution of the sound
is trapped within the duct (section 3.2). The sound speed profile
was calculated using a temperature gradient of +15 *C/km from
the surface to 300 m and a temperature gradient of —8 °C/km
above that with a surface temperature of 20 °C (figure D-6).

Geometries Used

Two types of geometries were used in the comparison. In the first type of
geometry, constant recciver height, the recciver remains at a height constant
with range. Constant receiver height geometry is not realistic for known types
of devices; however, it does illustrate refractive shadow zone effects. Heights
of 500 and 1000 m were used for the constant receiver height geometry. The
heights were chosen to try to minimize the effects of acoustic ducting,
refractive skadow zones, and ground impedance. The second type of
geometry, slant path, approximates an idealized slant flight path an acoustic
receiver might take. The calculations were made for slant paths with 30°, 45°,
and 60°, measured from horizontal drop paths over a 4- by 4-km grid. In each
case, the height of the source is assumed to be 1 m.
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3.3 Molecular Absorption Parameters

The value of ATTN and the numerical propagation models used the ANSI
standard S1.26-1978 to obtain the molecular absorption coefficients. The
molecular absorption coefficients were based on the acoustic frequencies used
(50 10 450 Hz at 100 Hz intervals), temperature (30 °C for Cases 1 and 3 and
20 °C for Cases 2, 4, §, and 6), atmospheric pressure (980 mb), and relative
humidity (20 percent). The values used for molecular absorption are shown in
Table 1.

Table 1. Attenuation coefficients used in comparison

Attenuation Coefficient (dB/m)

Frequency (Hz) 20 °C 30 °C
50 0.000171 0.000136
150 0.000866 0.000954
250 0.001383 0.001858
350 0.001828 0.002572

450 0.002307 0.003139




4. Results of Comparison

4.1

The results of the model comparison will be discussed in this section of the
report. Appendices A, B, and C contain the graphs of the scenarios used. The
result of every scenario is not discussed due to the massive number of results
computed. The results are divided into much smaller groups according to the
dominating effect. Also, the results are grouped into the two types of
geometries used: constant receiver height and slant path.

Constant Receiver Height (Appendices A and B)

The constant receiver height comparison shows very good agreement in most
cases between the candidate model and the FFP (dashed line = candidate
model and solid line = FFP). Within 2 km, the differences between the two
models are attributed to the effect of the ground impedance causing destructive
interference between the direct and reflected acoustic wave paths. More on the
effects of ground impedance is discussed in section 4.2,

Cases 2 and 3 (mild upward refraction and strong upward refraction) show the
effects of a refractive shadow zone beginning to affect the acoustic propagation
at ranges of 9 km for Case 2 (figures A-6 through A-10) and 7 km for Case 3
(figures A-11 through A-15) with a receiver height of 500 m. Using ray
theory, the receiver at 500 m is in the shadow zone at a range of 9,300 m for
Case 2, which is consistent with results. Because the sound speed gradient is -
larger in Case 3, the shadow zone occurs at a distance of 7 km. For the
scenarios in which the receiver is located 1 km above the ground, the distance
from the source to where the shadow zone occurs is much greater due to the
increased height of the receiver. Using ray theory, the distance to the shadow
rone occurs beyond 10 km. The effect of the shadow zone is not seen in the
graphs for Cases 2 and 3 in appendix B because the comparison was only
carried out to 10 kon. In Case 3, the distance to the shadow zone is just
beyond 10 km; therfore, the decreasing of the sound pressure levels near the
shadow zone can just be seen near 10 km.
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Cases 4, 5, and 6 (downward refraction, shallow inversion, and deep inversion)
show the effects of acoustic ducting. For an elevated receiver, an acoustic duct
causes a refractive shadow zone to form in the atmosphere above the ducting
region beyond a certain vertical propagation angle. In Case 4, this effect is
due more to the fact that a very small angular cross section of sound is
reaching the receiver instead of the formation of a refractive shadow zone.
The observed result looks very similar to the results from Cases S and 6 where
a shadow zone is formed. Using ray trace theory, the vertical propagation
angle, measured from horizontal, for a linear sound speed gradient is estimated
by

8, = cos”! e
] [(z‘_z')g +c,] ,Z)
where

c, = the sound speed at the source

Z = the height of the duct

z, = the source height

g = the linear sound speed gradient.

Using this equation, the propagation angles for Cases § and 6 are 6° and 7°,
respectively; therefore, any sound propagating greater than this angle is not
trapped in the acoustic duct. The effect is shown in the comparison plots for
Cases 5 and 6 and the location in which the effect begins agrees with the 6°
and 7° angles. The agreement between the equation and the plots is not exact
because ray theory does not accurately represent sound waves at the lower
frequencies. For cases in which a logarithmic sound speed gradient is present,
the vertical propagation angle will be larger due to the more intense sound
speed gradients near the ground. However, the propagation angle for a
logarithmic gradient is still less than 25°; therefore, because of the unique
nature of the near vertical propagation, acoustic ducts are not a problern
because the receiver approaches the source at an angle much greater thia 25°,




4.2

Figure 1.

Slant Path (Appendix C)

In most cases, the slant path comparisons showed very good agreement in most
cases between the candidate model and the FFP. The main discrepancy in the
comparisons is due to the effect of ground impedance on the sound field from
the source. Figures 1 through 3 show the effects on the sound field because
of ground impedance for 50, 100, and 200 Hz in a homogeneous atmosphere.
Figures 1 through 3 are constant sound pressure level contours with the slant
paths for 30°, 45°, and 60° overlayed. Reflections from the ground can cause
amplitude and phase changes that can result in an interference pattern.
Figures 2 and 3 show the interference pattern. In the field, the large decrease
in sound level is not measured for two reasons: 1) The comparison was made
for a single source. In the battlefield, tanks appear in a column several tens-of-
meters long giving a sound field pattern that is a superposition of the sound
field offset by the spacing between the tanks. The comparison helps fill in
some of the destructive interference regions. 2) Scattering from atmospheric
turbulence fills in the regions of destructive interference. [9] The two effects
minimize the negative effect of the ground reflections on the sound field.

6"/

1000

/
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ange (n)

0

Constant sound pressure level contours for 50 Hz.
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Figure 2. Constant sound pressure level contours for 100 Hz.
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Figure 3. Constant sound pressure level contours for 200 Hz.
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5. Conclusions

51

5.2

53

Constant Receiver Height

The comparison between the candidate model and the FFP was good for the
different atmospheric cases used. Effects from refractive shadow zones and
ducting were seen in the comparison, but the effects occurred at ranges greater
than the range of interest for current Army needs. At close ranges, the
interference caused by the ground could be seen. The effects of the ground
will be reduced from superposition of the sources in the tank column and
scattering from atmospheric turbulence.

Slant Path

The comparison between the candidate model and the FFP for the slant path
cases showed good agreement. The slant path cases were not largely affected
by the type of atmosphere being used, which is unique to the near vertical
propagation.  Surface-to-surface propagation shows significant differences
under the different atmospheric cases. The only issue that occurred was with
the interference from ground reflections. As mentioned, the interference will
be minimized by superposition of the sources and scattering from atmospheric
turbulence. The net effect of the ground reflections is a few decibel reduction
in the predicted sound levels along certain slant paths aligned with the
destructive interference lines.

General

The overall conclusion from this comparison is, for near vertical acoustic
propagation, the use of a simple acoustic propagation model that only
incorporates spherical spreading and molecular absorption performs as good as
a more complex propagation model with the exception of the effect caused by
ground reflections. Ground based sensors will be heavily impacted by the
various states of the atmosphere considered in this comparison. The only
potential issue is the degree of the effect from the ground reflections on the




sound field at the location of the receiver. Although the scope of this
comparison did not address it, the degree of the ground effect will be
minimized due to the superposition of the sources (because tanks typically
move in columns) and scattering of the acoustic wave by atmospheric

turbulence.
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Appendix A

Constant Receiver Height of 500 m
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Figure A-1. 50 Hz for homogeneous profile.
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Figure A-2. 150 Hz for homogeneous profile.
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Figure A-3. 250 Hz for homogeneous profile.
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Figure A-4. 350 Hz for homogeneous profile.
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Figure A-S. 450 Hz for homogeneous profile.
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Figure A-10. 450 Hz for mild upward refraction profile.
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Figure A-17. 150 Hz for downward refraction profile.

Figure A-18. 250 Hz for downward refraction profile.
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Appendix B

Constant Receiver Height of 1000 m
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Appendix C

Slant Path
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Figure C-24. 250 Hz for shallow inversion profile.
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Figure C-26. 450 Hz for shallow inversion profile.
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Figure C-30. 350 Hz for deep inversion profile.
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Appendix D

Sound Speed Profiles From Cases and Measured
Meteorological Profiles
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Figure D-1. Sound speed profile for homogeneous profile.
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Figure D-2. Sound speed profile for mild upward refraction profile.
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Figure D-5. Sound speed profile for shallow inversion profile.
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Figure D-6. Sound speed profile for deep inversion profile.
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Sound speed profile calculated from JAPE meteorological data that

shows a state close to the homogeneous profile used in the comparison.
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Sound speed profile calculated from JAPE meteorological data that

shows a state close to the mild upward refraction profile used in the comparison.
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Figure D-9. Sound speed profile calculated from JAPE meteorologica! data that
shows a state close to the strong upward refraction profile used in the
comparison.
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Figure D-10. Sound speed profile calculated from JAPE meteorological data that

shows an approximate state to the downward refraction profile used in the
comparison.
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Figure D-11. Sound speed profile calculated from JAPE meteorological data that
shows a state close to the shallow inversion profile used in the comparison.
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Figure D-12. Sound speed profile calculated from JAPE meteorological data that
shows a state close to the deep inversion profile used in the comparison.
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Appendix E

Ray Traces to Illustrate How Sound is Propagating for Each Case
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Figure E-1. Traces of acoustic rays for the homogeneous profile. The rays are
not bent because the sound speed gradient is zero.

82




L

1“0 e ——— :

1400

o

1000

w

Helsh« (m) 400 =

400 T'
300 >
Shadew
Zone
0
. o - et —
300 o"'——"‘"‘- 4000 8000 13000

Rangs (m)

Figure E-2. ‘Traces of acoustic rays for the mild upward refraction profile
showing the refiactive shudow zone.
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Figure E-3. Traces of acoustic rays for the strong upward refraction profile
showing the refractive shadow zone. P ’
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Figure E-4. Traces of scoustic rays for the downward refraction profile.
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Figure E-5. Traces of acoustic rays for the for the shallow inversion profile
showing the sound duct and the refractive shadow zone above the duct.
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Figure E-6. Traces of acoustic rays for the for the deep inversion profile showing
the sound duct and the refractive shadow zone above the duct.
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